Yazar "Palanti, Sabrina" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Beech (Fagus orientalis) wood modification through the incorporation of polystyrene-ricinoleic acid copolymer with Ag nanoparticles(Springer, 2022) Can, Ahmet; Sivrikaya, Hüseyin; Hazer, Baki; Palanti, SabrinaCellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.Öğe Physical, biological and chemical characterisation of wood treated with silver nanoparticles(Springer, 2019) Can, Ahmet; Palanti, Sabrina; Sivrikaya, Huseyin; Stefani, Federico; Hazer, BakiNowadays, environmentally friendly processes are of great interest and are considerably needed due to the environmental pollution seems to be a problem worldwide. For this reason, in this study, silver nanoparticles were synthesized using environmentally-friendly methods and their effectiveness as wood preservatives was investigated. Scots pine (Pinus sylvestris L.) samples were impregnated with an autoxidized soybean oil polymer containing Ag nanoparticles (Agsbox). Samples characterised by Fourier transform infrared spectroscopy (FTIR) were tested against brown rot (Coniophora puteana) and wood-destroying insects (Hylotrupes bajulus). In addition, decay tests were applied to mini-block samples leached according to the EN 84 standard. Results demonstrated that Agsbox increased decay resistance in the unleached samples. However, low efficacy was exhibited against newborn H. bajulus larvae. As a results of FTIR measurement, impregnated with the nanocomposites showed significant changes at the 2910cm(-1) (C-H) and 1712cm(-1) (C=O) peaks.