Performance comparison of artificial bee colony algorithm based approaches for retinal vessel segmentation

dc.authorid0000-0003-3399-7188
dc.contributor.authorCihan, Mehmet Celalettin
dc.contributor.authorÇetinkaya, Mehmet Bayadır
dc.contributor.authorDuran, Hakan
dc.date.accessioned2022-03-18T11:04:31Z
dc.date.available2022-03-18T11:04:31Z
dc.date.issued2021en_US
dc.departmentKapadokya Üniversitesi, Kapadokya Meslek Yüksekokulu, Odyometri Bölümü
dc.descriptionTARAMATRDİZİN
dc.description.abstractStructural changes in the retinal blood vessels provide important information about retinal diseases. Therefore, computer-aided segmentation of retinal blood vessels has become an active area of research in last decades. Due to the close contrast between the retinal blood vessels and the retinal background, robust methods should be developed to detect retinal blood vessels with high accuracy. In this work, artificial bee colony (ABC) algorithm which provides effective solutions to engineering problems has been applied to the retinal vessel segmentation. Clustering based ABC (basic ABC), quick-ABC (Q-ABC) and modified ABC (MR-ABC) algorithms have been analyzed for accurate segmentation of retinal blood vessels and their performances were compared. The simulations have been realized on the normal and abnormal retinal images taken from the DRIVE database. Simulation results and statistical analyses represent that ABC based approaches are stable and able to reach to optimal clustering performance with higher convergence rates. As a result it can be concluded that ABC based approaches can successfully be used for accurate segmentation of retinal blood vessels.
dc.identifier.citationCİHAN M. C,ÇETİNKAYA M. B,DURAN H (2021). Performance comparison of artificial bee colony algorithm based approaches for retinal vessel segmentation. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 792 - 807. Doi: 10.25092/baunfbed.938412
dc.identifier.endpage807en_US
dc.identifier.issn1301-7985
dc.identifier.issue2en_US
dc.identifier.startpage792en_US
dc.identifier.urihttps://doi.org/10.25092/baunfbed.938412
dc.identifier.urihttps://hdl.handle.net/20.500.12695/1536
dc.identifier.volume23en_US
dc.indekslendigikaynakTR-Dizin
dc.institutionauthorCihan, Mehmet Celalettin
dc.language.isotr
dc.relation.ispartofBalıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRetinal blood vessel segmentation
dc.subjectartificial bee colony algorithm
dc.subjectquick artificial bee colony algorithm
dc.subjectmodified artificial bee colony algorithm
dc.titlePerformance comparison of artificial bee colony algorithm based approaches for retinal vessel segmentation
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
95f220fd-0b19-48c6-828d-276839ae5860.pdf
Boyut:
722.92 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale / Article
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: